If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x=x^2/3600-50x
We move all terms to the left:
x-(x^2/3600-50x)=0
Domain of the equation: 3600-50x)!=0We get rid of parentheses
We move all terms containing x to the left, all other terms to the right
-50x)!=-3600
x!=-3600/1
x!=-3600
x∈R
-x^2/3600+x+50x=0
We multiply all the terms by the denominator
-x^2+x*3600+50x*3600=0
We add all the numbers together, and all the variables
-1x^2+x*3600+50x*3600=0
Wy multiply elements
-1x^2+3600x+180000x=0
We add all the numbers together, and all the variables
-1x^2+183600x=0
a = -1; b = 183600; c = 0;
Δ = b2-4ac
Δ = 1836002-4·(-1)·0
Δ = 33708960000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{33708960000}=183600$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(183600)-183600}{2*-1}=\frac{-367200}{-2} =+183600 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(183600)+183600}{2*-1}=\frac{0}{-2} =0 $
| 5^x+1=0,2 | | 4(3x+6)=4+2x | | 7^6x=15^x+8 | | 6x-25-5x=5x-40-5x | | 4t+1/5=3/5 | | 2^((5x-4))=64 | | b/5=2b/5-3 | | 12w=32 | | F(x)=(2x-5)2 | | r²+9r+14=0 | | -4(y+2)+3y=-4y-8+3y | | 3(x-3)-2(x+1)=-7 | | (2x-3)^2-2x(4+2x)=11 | | 6–4n=50 | | 180-x=4x+7 | | 4.9t^2-12t-80=0 | | X*(1.5x)=264 | | 2x+8=8x+5 | | -4+u/5=-29 | | 4x*2+18x+14=6 | | -4+u/5=-19 | | (3x+5)^2=48 | | V-(2v+6.9)=18.6 | | 5x^2-4x=3x^2+x | | 5^2-10x+25=40 | | 2r+5-(r+7)=32 | | 9x^2=3x^2-7 | | a-15=13-3a | | 5q+1/2=q/3-q/4 | | -0.7x+6.14=-0.9x+5.14 | | p+5/2=p-3/4 | | 19=7+4y |